Eby, R. K. \& Hawthorne, F. C. (1989b). Mineral. Petrol. 40, Hawthorne, F. C. \& Eby, R. K. (1985). Neues Jahrb. Mineral. 127-136.
Ghose, S., Fehlmann, M. \& Sundaralingam, M. (1965). Acta Cryst. 18, 777-786.
Groat, L. A. \& Hawthorne, F. C. (1987). Tschermaks Mineral. Petrogr. Mitt. 37, 87-96
Hawthorne, F. C. (1985a). Mineral. Mag. 49, 85-91.
Hawthorne, F. C. (1985b). Tschermaks Mineral. Petrogr. Mitt. 34, 15-34.
Hawthorne, F. C. (1986a). Can. Mineral. 24, 625-642.
Hawthorne, F. C. (1986b). Am. Mineral. 71, 206-209.

Monatsh. pp. 234-240.
Hawthorne, F. C. \& Groat, L. A. (1985). Am. Mineral. 70, 1050-1055.
Hawthorne, F. C. \& Groat, L. A. (1986). Mineral. Mag. 50, 157-162.
Hawthorne, F. C., Groat, L. A. \& Eby, R. K. (1989). Can Mineral. 27, 205-209.
Sheldrick, G. M. (1981). Nicolet SHELXTL Operations Manual. Revision 3. Nicolet XRD Corporation, Cupertino, California, USA.

Structure of Alkaline-Earth Pentafluoroantimonates(III), $\mathbf{M S b F}_{5}$ ($\mathbf{M}=\mathbf{S r}, \mathbf{B a}$)

By P. Gravereau, C. Mirambet, L. Fournes, J. Grannec and L. Lozano
Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence CEDEX, France

(Received 10 April 1990; accepted 16 May 1990)

Abstract

Strontium pentafluoroantimonate(III), $\mathrm{SrSbF}_{5}, \quad M_{r}=304 \cdot 36$, orthorhombic, $\mathrm{Pbcm}, a=$ 4.378 (1),$\quad b=8.853$ (3), $\quad c=11.233$ (4) $\AA, \quad V=$ 435.4 (3) $\AA^{3}, Z=4, D_{m}=4.60, D_{x}=4.64 \mathrm{Mg} \mathrm{m}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=18.9 \mathrm{~mm}^{-1}, \quad F(000)=$ 536, $T=298 \mathrm{~K}, R=0.028$ for 596 independent reflections with $I>3 \sigma(I)$. Barium pentafluoroantimonate(III), $\quad \mathrm{BaSbF}_{5}, \quad M_{r}=354 \cdot 08$, orthorhombic, $P b c m, a=4.676(1), \quad b=9.313$ (2), $c=$ $11 \cdot 213$ (3) $\AA, V=488.3$ (2) $\AA^{3}, Z=4, D_{m}=4.77, D_{x}$ $=4.82 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $13.6 \mathrm{~mm}^{-1}, F(000)=608, T=298 \mathrm{~K}, R=0.015$ for 914 independent reflections with $I>3 \sigma(I) . \mathrm{SrSbF}_{5}$ and BaSbF_{5} are isostructural compounds. The threedimensional network consists of isolated SbF_{5}^{2-} units which are connected by ten-coordinated alkalineearth ions Sr^{2+} or Ba^{2+}. The geometry of these pentafluoroantimonate ions is approximately square pyramidal with the Sb atom outside the pyramid, below the four F atoms constituting the basal plane.

Introduction. Most of the previous works devoted to tin(II), antimony(III) or tellurium(IV) compounds have emphasized the prominent role played by the free electron pair, usually leading to original structures (Gillespie \& Nyholm, 1957; Fourcade \& Masherpa, 1978).

In particular, the reaction of SbF_{3} with monovalent fluorides gives various series of fluorocomplexes: $M_{2} \mathrm{SbF}_{5}$ (Byström \& Wilhelmi, 1951b; Ryan \& Cromer, 1972; Habibi, Ducourant, Fourcade \& Masherpa, 1974a), MSbF_{4} (Byström, Bäcklund \& Wilhelmi, 1951; Byström, Bäcklund \& Wilhelmi, 1952; Mehrain, Ducourant, Fourcade \&

Masherpa, 1974; Habibi, Bonnet \& Ducourant, 1978), $M \mathrm{Sb}_{2} \mathrm{~F}_{7}$ (Byström \& Wilhelmi, 1951a; Ryan, Mastin \& Larson, 1971; Mastin \& Ryan, 1971; Habibi, Ducourant, Fourcade \& Masherpa, 1974b), $\mathrm{MSb}_{4} \mathrm{~F}_{13}$ (Byström \& Wilhelmi, 1950; Ducourant, Fourcade, Philippot \& Masherpa, 1975), $M \mathrm{Sb}_{3} \mathrm{~F}_{10}$ (Fourcade, Masherpa \& Philippot, 1975; Ducourant, Bonnet, Fourcade \& Masherpa, 1975), $M_{4} \mathrm{Sb}_{5} \mathrm{~F}_{19}$ and $M_{3} \mathrm{Sb}_{4} \mathrm{~F}_{15}$ (Ducourant \& Fourcade, 1976). Structural determinations have been carried out on some of them.
SbF_{5}^{2-} units have so far been found only in the presence of alkali ions $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$as well as with NH_{4}^{+}and Tl^{+}. The possible existence of homologous species in other compounds prompted us to investigate the alkaline-earth fluorideantimony trifluoride systems. The present paper reports the single-crystal structure determination of SrSbF_{5} and BaSbF_{5}.

Experimental. The two compounds SrSbF_{5} and BaSbF_{5} were prepared by solid-state reactions from stoichiometric mixtures of SbF_{3} and $M \mathrm{~F}_{2}(M=\mathrm{Sr}$, $\mathrm{Ba})$. The starting materials were mixed in a dry glove box, introduced into gold tubes and heated under vacuum at 393 K . The tubes were then sealed in a dry argon atmosphere and heated over 15 h at 573 K . Single crystals were obtained by heating SrSbF_{5} and BaSbF_{5} to 783 and 903 K respectively, then by slow cooling ($3 \mathrm{~K} \mathrm{~h}^{-1}$) to $403 \mathrm{~K} . D_{m}$ values were obtained by hydrostatic methods.

Orthorhombic symmetry was deduced from Laue, Weissenberg and precession photographs. Cell parameters were determined from an X-ray powder (c) 1990 International Union of Crystallography

Table 1. Details of data collection and refinement for SrSbF_{5} and BaSbF_{5}

	SrSbF_{5}	BaSbF_{5}
Crystal colour	Translucent, colourless	Translucent, colourless
Crystal form	Parallelepiped	Sphere
and size ($\mu \mathrm{m}$)	$30 \times 40 \times 60$	$r \simeq 45$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.81	0.81
Transmission factor range	$0.481<T<0.495$	$0.418<T<0.435$
Index range h	$-7 \rightarrow 7$	$-7 \rightarrow 7$
k	$-14 \rightarrow 14$	$-14 \rightarrow 14$
l	$0 \rightarrow 11$	$0 \rightarrow 17$
Monochromator	Graphite	Graphite
Scan type	$\omega-2 \theta$	$\omega-2 \theta$
Scan angle (${ }^{\circ}$)	$0.90+0.35 \tan \theta$	$0.80+0.35 \tan \theta$
Counter slit width (mm)	$2 \cdot 50+4 \cdot 30 \tan \theta$	$2.00+4.60 \tan \theta$
$\Delta I / I$ (\%) for the three control reflections	$5 \cdot 6$	$4 \cdot 5$
No. of measured reflections	3019	4470
No. of unique reflections with $I>3 \sigma(I)$	596	914
$R_{\text {int }}$ (\%)	1.6	1.7
No. of parameters refined	37	37
Weighting scheme	$1 / \sigma^{2}\left(F_{o}\right)$	$1 / \sigma^{2}\left(F_{o}\right)$
$\begin{aligned} & \text { Extinction parameter } \\ & \text { in } F_{c}=F\left(1-10^{-4}\right. \\ & \left.\times x F^{2} / \sin \theta\right) \end{aligned}$	$92(2) \times 10^{-4}$	$14.3(9) \times 10^{-4}$
R	0.028	0.015
$w R$	0.035	0.022
S	1.363	0.868
Max. shift/e.s.d.	0.001	0.002
Max. of residual (e \AA^{-3})	1.4 (near Sb)	1.6 (near Ba)

diffraction pattern (graphite-monochromated $\mathrm{Cu} K \alpha$ radiation and Si as internal standard) using 25 reflections ($7<\theta<29^{\circ}$) for SrSbF_{5} and 28 reflections $\left(9<\theta<28^{\circ}\right)$ for BaSbF_{5}. Conditions of the data collection with an Enraf-Nonius CAD-4 diffractometer are shown in Table 1. Corrections were made for Lorentz-polarization effects but not for absorption.

Systematic absences $k=2 n+1$ for $0 k l$ and $l=2 n$ +1 for $h 0 l$ consistent with two possible space groups: Pbcm and $P b c 2_{1}$. Atomic scattering factors for $\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Sb}^{3+}$ and F^{-}and anomalousdispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV).
Structure determined in space group Pbcm by the heavy-atom method with program SHELX76 (Sheldrick, 1976) and IBM 3090-400 computer of the Computing Center of Montpellier. Structure of $\mathrm{BaSbF} 5_{5}$ was solved first. Sites of Ba^{2+} and Sb^{3+} ions were found by Patterson function deconvolution ($R \simeq 0.17$) and F^{-}ions were located with several difference Fourier syntheses.

Structural parameters of SrSbF_{5} were obtained based on the hypothesis of isostructurality. Details of final refinements with weighting scheme and empirical isotropic extinction parameter are indicated in Table 1. Reliability factors lowered to $R=0.028$ and $w R=0.035$ for SrSbF_{5} and to $R=0.015$ and $w R=$
0.022 for BaSbF_{5}. Calculations with the noncentrosymmetric group $P b c 2_{1}$ did not improve the model. The final atomic parameters of the two compounds are given in Table 2 and selected bond lengths and angles are listed in Table 3.*

Discussion. Projections of the structure along [100] and along [001] are presented in Fig. 1. The threedimensional network may be described in terms of independent SbF_{5}^{2-} fluoro anions connected to $M \mathrm{~F}_{10}$ alkaline-earth polyhedra.

The site of Sb^{3+} consists of a distorted $\mathrm{SbF}_{5} E^{2-}$ octahedron. The cation is located outside the pyramid formed by the five F^{-}ions. The presence of the lone pair yields the typical environment which has already been reported in numerous other ternary antimony fluorides, for example in $M_{2} \mathrm{SbF}_{5}$ ($M=$ $\mathrm{Na}, \mathrm{K}, \mathrm{NH}_{4}, \mathrm{Tl}$) and KSbF_{4}. The same environment has been found in the two compounds SrSbF_{5} and

[^0]

Fig. 1. Projections of the $M \mathrm{SbF}_{5}(M=\mathrm{Sr}, \mathrm{Ba})$ structure: (a) along [100] and (b) along [001].

Table 2. Atomic parameters and equivalent isotropic temperature factors (estimated standard deviations in parentheses)

	$B_{\mathrm{eq}}=\frac{8}{3} \pi^{2} \sum_{i=1}^{3} \sum_{j=1}^{3} a_{i}^{*} a_{j}^{*} U_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.					
	Position	Site symmetry	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
SrSbF 5						
Sr	4(c)	$2 .$.	0.0084 (1)	$\frac{1}{4}$	0	0.826 (17)
Sb	4(d)	..m	$0 \cdot 3890$ (1)	0.0537 (1)	$\frac{1}{4}$	0.839 (17)
F(1)	4(d)	..m	0.0758 (10)	$0 \cdot 2124$ (5)	$\frac{1}{4}$	1.56 (15)
$F(2)$	8(e)	1	0.4793 (7)	0.7011 (4)	$0 \cdot 1118$ (4)	1.96 (12)
$F(3)$	8(e)	1	0.0878 (8)	0.9870 (4)	$0 \cdot 1140$ (4)	1.81 (12)
BaSbF_{5}						
Ba	4(c)	$2 .$.	0.02762 (5)	$\frac{1}{4}$	0	$0 \cdot 853$ (5)
Sb	4(d)	.. m	0.40594 (6)	0.04943 (3)	4	1.016 (5)
F(1)	4(d)	..m	$0 \cdot 1184$ (6)	$0 \cdot 2040$ (3)	$\frac{1}{4}$	1.48 (5)
F(2)	8(e)	1	0.4573 (4)	0.6873 (3)	$0 \cdot 1148$ (2)	$2 \cdot 16$ (5)
F(3)	8(e)	1	$0 \cdot 1189$ (6)	0.9856 (2)	$0 \cdot 1174$ (2)	2.09 (5)

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{MSbF}_{5}(M=\mathrm{Sr}, \mathrm{Ba})$ (e.s.d.'s in parentheses)

	$M=\mathrm{Sr}$	$M=\mathrm{Ba}$
$\mathrm{Sb}-\mathrm{F}(1)$	1×1.963 (4)	1×1.970 (3)
$\mathrm{Sb}-\mathrm{F}\left(2^{\text {i }}\right.$)	2×2.108 (4)	2×2.087 (2)
$\mathrm{Sb}-\mathrm{F}\left(3^{\text {ii) }}\right.$)	2×2.103 (4)	2×2.090 (2)
$\mathrm{F}(1)-\mathrm{F}\left(2^{\text {i }}\right.$)	2×2.493 (5)	2×2.502 (3)
$\mathrm{F}(1)-\mathrm{F}\left(3^{\text {ii) }}\right.$)	2×2.514 (5)	2×2.520 (3)
$\mathrm{F}\left(2^{\text {i }}\right.$)-F($2^{\text {iii }}$)	$1 \times 3.106(8)$	$1 \times 3.032(4)$
$\mathrm{F}\left(3^{\text {ii }}\right)-\mathrm{F}\left(3^{\text {iv }}\right)$	1×3.055 (8)	1×2.974 (4)
$\mathrm{F}\left(2^{\mathrm{i}}\right)-\mathrm{F}\left(3^{\text {ii }}\right)$	2×2.680 (8)	2×2.731 (4)
$\mathrm{F}(1)-\mathrm{Sb}-\mathrm{F}\left(2^{\text {i }}\right.$)	75.4 (1)	$76 \cdot 1$ (1)
$\mathrm{F}(1)-\mathrm{Sb}-\mathrm{F}\left(3^{\text {ii }}\right)$	$76 \cdot 3$ (1)	76.7 (1)
$\mathrm{F}\left(2^{\text {i }}\right)-\mathrm{Sb}-\mathrm{F}\left(2^{\text {iii }}\right)$	94.8 (2)	93.2 (1)
$\mathrm{F}\left(2^{\text {i }}\right.$) $-\mathrm{Sb}-\mathrm{F}\left(3^{\text {iii }}\right.$)	79.1 (1)	81.7 (1)
$\mathrm{F}\left(3^{\text {ii) }}\right.$) $-\mathrm{Sb}-\mathrm{F}\left(3^{\text {iv }}\right)$	93.2 (2)	90.7 (1)
$M-\mathrm{F}(1)$	2×2.843 (1)	2×2.867 (1)
$M-\mathrm{F}\left(2^{\text {i }}\right.$)	2×2.515 (3)	2×2.672 (2)
M - $\mathrm{F}\left(2^{2}\right)$	2×2.606 (3)	2×2.793 (2)
$M-\mathrm{F}\left(3^{\text {ii) }}\right.$)	2×2.494 (4)	2×2.649 (2)
$M-\mathrm{F}\left(3^{\text {vi }}\right)$	$2 \times 2 \cdot 680$ (4)	2×2.825 (2)
<M-F)	$2 \cdot 628$	2.761

Symmetry code: (i) $1-x, y-\frac{1}{2}, z$; (ii) $x, y-1, z$; (iii) $1-x, y-\frac{1}{2}$, $\frac{1}{2}-z$; (iv) $x, y-1, \frac{1}{2}-z$; (v) $-x, y-\frac{1}{2}, z$; (vi) $-x, 1-y,-z$.
BaSbF_{5}. The distance separating the Sb atom from the rectangular base of the pyramid is approximately the same: $0.51 \AA$ in SrSbF_{5} and $0.50 \AA$ in BaSbF_{5}.

Fig. 2(a) shows the thermal ellipsoids determined for the so-called equatorial $[F(2)$ and $F(3)]$ and axial $\mathrm{F}(1)$ fluorine ions constituting this unit. As expected, the presence of the lone pair E in the axial direction induces a distortion of the octahedron around the Sb atom. The $E-\mathrm{F}(2)$ and $E-\mathrm{F}(3)$ interactions, which are strongest, lead to an $\mathrm{Sb}-\mathrm{F}(1)$ bond ($1.963 \AA$ for SrSbF_{5} and $1.970 \AA$ for BaSbF_{5}) shorter than $\mathrm{Sb}-\mathrm{F}(2)$ and $\mathrm{Sb}-\mathrm{F}(3)$ bonds (greater than $2 \AA$). For the same reasons $\mathrm{F}(1)-\mathrm{Sb}-\mathrm{F}(2)$ and $\mathrm{F}(1)-$ $\mathrm{Sb}-\mathrm{F}(3)$ angles are always less than 90° (from $75 \cdot 4$ to $76 \cdot 7^{\circ}$).

In addition it should be noticed that the alkalineearth ions ensure a strong cohesion between the neighbouring $\mathrm{SbF}_{5} E^{2-}$ units since the $\mathrm{F}(2) \cdots \mathrm{F}(2)$ and

(a)

(b)

Fig. 2. Structural representations of the cationic environments: (a) for antimony and (b) for the alkaline-earth atom.
$\mathrm{F}(3) \cdots \mathrm{F}(3)$ interpyramidal distances are shorter than the $F(2) \cdots F(2)$ and $F(3) \cdots F(3)$ intrapyramidal ones. The following values (\AA) have been found:
in SrSbF_{5}
$F(2) \cdots F(2)_{\text {interpyr. }}=2.656$
$F(3) \cdots F(3)_{\text {interpyr. }}=2 \cdot 684$
$F(2) \cdots F(2)_{\text {intrapyr. }}=3 \cdot 106$
$F(3) \cdots F(3)_{\text {intrapyr. }}=3.055$;
in BaSbF_{5}
$\begin{array}{ll}F(2) \cdots F(2)_{\text {interpyr. }}=2.827 & F(3) \cdots F(3)_{\text {interpyr. }}=2.870 \\ F(2) \cdots F(2)_{\text {intrapyr. }}=3.032 & F(3) \cdots F(3)_{\text {intrapyr. }}=2.974 .\end{array}$
Every alkaline-earth ion is coordinated by ten F^{-} ions which build up a distorted 4.4.1.1. bicapped cube (Fig. 2b). Such an environment is unusual for large M^{2+} cations in fluorides: indeed in most cases
the coordination found for Sr^{2+} or Ba^{2+} is eight, nine or twelve (Von der Mühll \& Ravez, 1974; Von der Mühll, Daut \& Ravez, 1973; Von der Mühll, Andersson \& Galy, 1971; Abjean, Leblanc, De Pape \& Ferey, 1985).

As could be expected, the $\mathrm{Sr}-\mathrm{F}$ distances are shorter than the $\mathrm{Ba}-\mathrm{F}$ ones, as shown in Table 3. The $M \mathrm{~F}_{10}$ polyhedron is somewhat distorted, but nevertheless less so than in other fluorinated compounds (De Kozak, Leblanc, Samouël, Ferey \& De Pape, 1981). In SrSbF_{5} and BaSbF_{5} two SbF_{5} pyramids share one face $[F(1), F(2), F(3)]$ with this polyhedron, whereas four other pyramids are linked to the polyhedron by one apex.

Every F^{-}ion exhibits a threefold coordination with the cations ($1 \mathrm{Sb}^{3+}$ and $2 M^{2+}$), thus ensuring a strong connection in the three-dimensional network: the $\mathrm{F}(1)$ ions are tied to the M^{2+} ion along the z direction, whereas the $F(2)$ and $F(3)$ ions are bonded to this divalent cation along x and y respectively (Fig. 1b). Such an environment leads to the following electrostatic valence for fluorine: e.v. $=\left(1 \times \frac{3}{5}\right)+(2 \times$ $\left.\frac{2}{10}\right)=1$. The identical result obtained for the three types of fluorine ions $[F(1), F(2)$ and $F(3)]$ is in good agreement with the counteraction observed in the interatomic distances: $\mathrm{Sb}-\mathrm{F}(1)<\mathrm{Sb}-\mathrm{F}(2,3)$ is correlated with $M-\mathrm{F}(1)>M-\mathrm{F}(2,3)$.

References

Abjean, P., Leblanc, M., De Pape, R. \& Ferey, G. (1985). Acta Cryst. C41, 1696-1698.
Byström, A., Bäcklund, S. \& Wilhelmi, K. A. (1951). Ark. Kemi, 4, 175-183.

Byström, A. Bäcklund, S. \& Wilhelmi, K. A. (1952). Ark. Kemi, 6, 77-87.
Byström, A. \& Wilhelmi, K. A. (1950). Ark. Kemi, 3, 17-30.
Byström, A. \& Wilhelmi, K. A. (1951a). Ark. Kemi, 3, 373-380.
Byström, A. \& Wilhelmi, K. A. (1951b). Ark. Kemi, 3, 461-467.
De Kozak, A., Leblanc, M., Samouël, M., Ferey, G. \& De Pape, R. (1981). Rev. Chim. Minér. 18, 659-666.
Ducourant, B., Bonnet, B., Fourcade, R. \& Masherpa, G. (1975). Bull. Soc. Chim. Fr. 7-8, 1471-1475.

Ducourant, B. \& Fourcade, R. (1976). CR A .u. sici. Sér. C, 282, 741-744.
Ducourant, B., Fourcade, R., Philippot, E. \& Masherpa, G. (1975). Rev. Chim. Minér. 12, 553-562.

Fourcade, R. \& Masherpa, G. (1978). Rev. Chim. Minér. 15, 295-306.
Fourcade, R., Masherpa, G. \& Philippot, E. (l^{\prime} j). Acta Cryst. B31, 2322-2326.
Gillespie, R. J. \& Nyholm, R. S. (1957). Q. Rev. Chem. Soc. 11, 339-380.
Habibi, N., Bonnet, B. \& Ducourant, B. (1978). J. Fluorine Chem. 12, 237-247.
Habibi, N., Ducourant, b., Fourcade, R. \& Masherpa, G. (1974a). Bull. Soc. Chim. Fr. 1-2, 21-26.
Habibi, N., Ducourant, B., Fourcade, R. \& Masherpa, G. (1974b). Bull. Soc. Chim. Fr. 11, 2320-2324.
Mastin, S. H. \& Ryan, R. (1971). Inorg. Chem. 10(8), 1750-1760.
Mehrain, M., Ducourant, B., Fourcade, R. \& Masherpa, G. (1974). Bull. Soc. Chim. Fr. 5-6, 757-761.

Ryan, R. \& Cromer, D. T. (1972). Inorg. Chem. 11(10), 23222324.

Ryan, R., Mastin, S. H. \& Larson, A. C. (1971). Inorg. Chem. 10(12), 2793-2795.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Von der Mühll, R., Andersson, S. \& Galy, J. (1971). Acta Cryst. B27, 2345-2353.
Von der Mühll, R., Daut, F. \& Ravez, J. (1973). J. Solid State Chem. 8, 206-212.
Von der Mühll, R. \& Ravez, J. (1974). Rev. Chim. Minér. 11, 652-663.

Acta Cryst. (1990). C46, 2297-2299

Silver Dicyanamide, $\operatorname{AgN}(\mathbf{C N})_{2}-$ Orthorhombic Modification

By Doyle Britton
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

(Received 2 February 1990; accepted 9 May 1990)

Abstract

M_{r}=173.9\), orthorhombic, Pnma, $a=$ 16.133 (8),$\quad b=3.612$ (2),$\quad c=5.983$ (3) $\AA, \quad V / Z=$ 87.2 (1) $\AA^{3}, \quad Z=4, \quad D_{x}=3.313$ (4) $\mathrm{g} \mathrm{cm}^{-3}, \quad \mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA, \mu=456 \mathrm{~cm}^{-1}, ' F(000)=$ 320, $T=296$ (2) K, $R=0.086$ for 331 reflections. The structure consists of infinite chains, $-\mathrm{Ag}-\mathrm{N} \equiv \mathrm{C}-\mathrm{N}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Ag}-$, running parallel to the a direction. This is similar to the arrangement found in the trigonal form previously reported, except that the 3_{1} axis along the chain is replaced

0108-2701/90/122297-03\$03.00
here by a 2_{1} axis. The interatomic distances and angles are not significantly different from those found in the trigonal form.

Introduction. The crystal structure of trigonal $\mathrm{AgN}(\mathrm{CN})_{2}$ was reported previously (Britton \& Chow, 1977). At the time that that structure was determined, the first crystal examined was not identical with the trigonal crystals that comprised the bulk of the sample. The crystal was of poor quality and © 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53244 (7 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

